pandeia_io.find_closest_sed
pandeia_io.find_closest_sed(
teff,
logg,=None,
models_teff=None,
models_logg='phoenix',
sed_type )
A very simple cost-function to find the closest stellar model within a non-regular Teff-log_g grid.
Since these are not regular grids, the cost function is not an absolute science, it depends on what weights more Teff of logg for a given case. The current formula seems to be a good balance.
Parameters
Name | Type | Description | Default |
---|---|---|---|
teff | Target effective temperature. | required | |
logg | Target log(g). | required | |
models_teff | SED model effective-temperature grid. | None |
|
models_logg | SED model log(g) grid. | None |
|
sed_type | Select from ‘phoenix’ or ‘k93models’ | 'phoenix' |
Returns
Name | Type | Description |
---|---|---|
If models_teff or models_logg are None | sed: String The SED key that best matches the teff,logg pair. | |
Else | idx: integer index of model with the closest Teff and logg. |
Examples
>>> import gen_tso.pandeia_io as jwst
>>>
>>> # Kurucz models
>>> sed = jwst.find_closest_sed(
>>> teff=4143.0, logg=4.66, sed_type='k93models',
>>> )
>>> print(f'SED: {repr(sed)}')
'k7v'
SED: >>>
>>> # PHOENIX models when I already have the list of models:
>>> keys, names, p_teff, p_logg = jwst.load_sed_list('phoenix')
>>> teff = 4143.0
>>> logg = 4.66
>>> idx = jwst.find_closest_sed(teff, logg, p_teff, p_logg)
>>> print(f'{keys[idx]}: {repr(names[idx])}')
'K5V 4250K log(g)=4.5' k5v: